AN ANAMOLOUS REACTION PRODUCT IN VILSMEIER-HAACK REACTION

N.S.Narasimhan and T.Mukhopadhyay
Department of Chemistry, University of Poona, Pune 411 007, India

Summary: A Vilsmeier-Haack formylation is reported in which reduction has occurred with the methyl group of the reagent functioning as hydrogen donor.

We report below an intriguing reaction where, in a Vilsmeier-Haack reaction, not only formylation occurred but also reduction. Thus, when the trimethoxy allyl benzene \underline{l} was treated with the Vilsmeier-Haack reagent [from PhN(CHO)CH₃ and POCl₃], a compound was obtained whose spectral data indicated it to be \underline{l} or \underline{l} . The nOe experiments [far-H(Ar-CH₂) = 17 %, far-H(OMe) = 16 %, far-H(=CH-) = f_-CH=(Ar-H) = 0 %)] indicated that the aromatic proton was flanked by a methoxyl group on one side and a -CH₂- group, and not a = CH- group, on the other. This indicated uniquely to structure 2 for the compound.

An examination of the Vilsmeier-Haack reaction product 2 showed that formylation had occurred at two positions in compound 1. The anticipated structure corresponding to double formylation and resembling the carbon skeleton in compound 2 was 4 or 5 or the cyclised naphthalene derivative 6.

The formation of the dihydro compound 2, clearly indicated that a reduction had occurred during the reaction.

A priori, the hydrogen in the reduction reaction could have been from (i) another molecule of the starting compound or a product derived from it (a disproportionation reaction) (ii) the formyl group of PhN(CHO)CH₃, (iii) the methyl group of PhN(CHO)CH₃ or (iv) the water used during the work-up.

Compound 2 was obtained in not less than 58 % yield, ruling out any disproportionation reaction.

When the Vilsmeier-Haack reaction was carried out with PhN(CDO)CH₃, deuterium incorporation occurred only at the expected position of formylation to give compound 2.

When D₂0 was used to decompose the Vilsmeier-Haack reaction mixture, no deuterium incorporation occurred.

Finally, when the Vilsmeier-Haack reaction was carried out with PhN(CHO)CD₃ one atom of deuterium was incorporated to give compound $\underline{8}$ [NMR data and dehydrogenation to $\underline{9a}$ (R=H) and $\underline{9b}$ (R=D) $\overline{1}$, indicating that the hydrogen involved in the reduction was from the methyl group of PhN(CHO)CH₃.

We propose the following attractive mechanism for this novel reaction.

Experiments are in progress to trap the intermediates in the reaction.

Acknowledgement: We thank the C.S.I.R., New Delhi, for the award of a

Junior Research Fellowship to one of us (TM).